Noisy multi-label semi-supervised dimensionality reduction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Dimensionality Reduction

Dimensionality reduction is among the keys in mining highdimensional data. This paper studies semi-supervised dimensionality reduction. In this setting, besides abundant unlabeled examples, domain knowledge in the form of pairwise constraints are available, which specifies whether a pair of instances belong to the same class (must-link constraints) or different classes (cannot-link constraints)...

متن کامل

READER: Robust Semi-Supervised Multi-Label Dimension Reduction

Multi-label classification is an appealing and challenging supervised learning problem, where multiple labels, rather than a single label, are associated with an unseen test instance. To remove possible noises in labels and features of high-dimensionality, multi-label dimension reduction has attracted more and more attentions in recent years. The existing methods usually suffer from several pro...

متن کامل

Semi-Supervised Dimension Reduction for Multi-Label Classification

A significant challenge to make learning techniques more suitable for general purpose use in AI is to move beyond i) complete supervision, ii) low dimensional data and iii) a single label per instance. Solving this challenge would allow making predictions for high dimensional large dataset with multiple (but possibly incomplete) labelings. While other work has addressed each of these problems s...

متن کامل

Semi-supervised learning in Spectral Dimensionality Reduction

Biometric face data are essentially high dimensional data and as such are susceptible to the well-known problem of the curse of dimensionality when analyzed using machine learning techniques. Various dimensionality reduction methods have been proposed in the literature to represent high dimensional data in a lower dimensional space. Research has shown that biometric face data are non-linear in ...

متن کامل

Multiple view semi-supervised dimensionality reduction

Article history: Received 21 September 2008 Received in revised form 14 July 2009 Accepted 24 July 2009

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2019

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2019.01.033